Projectile Motion

Horizontal motion
The horizontal component of the velocity vx remains unchanged throughout the motion. 
vx=v0x=v0cosÏ‘0=const [
m
s
]
, where: 
v0 - initial velocity 
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis

Horizontal displacement
Horizontal displacement is described by the formula:
x(t)=x0+v0xt
x(t)=x0+(v0cosÏ‘0)t [m], where:
x0 - initial position
v0 - initial velocity
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis
t - time

Vertical motion
The vertical component of the velocity vyincreases linearly, because the acceleration due to gravity g is constant.
vy=v0ygt=v0sinÏ‘0gt [
m
s
]
, where: 
v0 - initial velocity 
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis 
t - time 
g - acceleration due to gravity

Vertical displacement
Vertical displacement is described by the formula:
y(t)=y0+v0yt
gt2
2

y(t)=y0+(v0sinϑ0)t
gt2
2
 [m], where:
x0 - initial position
v0 - initial velocity
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis
t - time
g - acceleration due to gravity

Trajectory
If we eliminate t between x(t) and y(t)equations we will obtain the following equation:
y=(tgϑ0)x
gx2
2(v0cosϑ0)2

v0 - initial velocity
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis
g - acceleration due to gravity

Range of a projectile time dependent
Assuming a flat Earth with a uniform gravity field, and no air resistance, a projectile launched with specific initial conditions will have a predictable range. This range time dependent is the total horizontal distance traveled by the projectile and can be described by the formula:

R(t)=(v0cosÏ‘0)t [m], where:
v0 - initial velocity
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis

Range of a projectile time independent
Assuming a flat Earth with a uniform gravity field, and no air resistance, a projectile launched with specific initial conditions will have a predictable range. This range time independent is the total horizontal distance traveled by the projectile and can be described by the formula:
R=
v02
g
s
i
n
(2Ï‘0)
 [m], where:
v0 - initial velocity
Ï‘0 - launch angle - the angle between v0and positive direction of the x axis
g - acceleration due to gravity

Post a Comment

0 Comments